Abstract
AbstractThe flexural strength variability of ‐ based ceramics at elevated temperatures creates the need for an Integrated Computational Materials Engineering (ICME) framework that relates the strength of a specimen directly to its manufacturing process. To create this ICME framework, a model must first be developed which establishes a relationship between the chemical vapor infiltration (CVI) process and parameters, the resulting mesoscale pores, and the overall macroscale flexural strength. Here, a nonlinear single‐pore model of CVI is developed used in conjunction with a four‐way coupled thermo‐mechanical damage model. The individual components of the model are tested and a sample system under a four‐point bending test is explored. Results indicate that specimens with an initial porosity greater than 30% require temperatures below 1273 K to maintain structural integrity, while those with initial porosities less than 30% are temperature‐independent, allowing for optimization of the CVI processing time without compromising strength.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.