Abstract

Land application of cattle slurry can result in incidental and chronic phosphorus (P) loss to waterbodies, leading to eutrophication. Chemical amendment of slurry has been proposed as a management practice, allowing slurry nutrients to remain available to plants whilst mitigating P losses in runoff. The effectiveness of amendments is well understood but their impacts on other loss pathways (so-called ‘pollution swapping’ potential) and therefore the feasibility of using such amendments has not been examined to date. The aim of this laboratory scale study was to determine how the chemical amendment of slurry affects losses of NH3, CH4, N2O, and CO2. Alum, FeCl2, Polyaluminium chloride (PAC)- and biochar reduced NH3 emissions by 92, 54, 65 and 77% compared to the slurry control, while lime increased emissions by 114%. Cumulative N2O emissions of cattle slurry increased when amended with alum and FeCl2 by 202% and 154% compared to the slurry only treatment. Lime, PAC and biochar resulted in a reduction of 44, 29 and 63% in cumulative N2O loss compared to the slurry only treatment. Addition of amendments to slurry did not significantly affect soil CO2 release during the study while CH4 emissions followed a similar trend for all of the amended slurries applied, with an initial increase in losses followed by a rapid decrease for the duration of the study. All of the amendments examined reduced the initial peak in CH4 emissions compared to the slurry only treatment. There was no significant effect of slurry amendments on global warming potential (GWP) caused by slurry land application, with the exception of biochar. After considering pollution swapping in conjunction with amendment effectiveness, the amendments recommended for further field study are PAC, alum and lime. This study has also shown that biochar has potential to reduce GHG losses arising from slurry application.

Highlights

  • The land application of dairy cattle slurry to farmland can result in incidental and chronic phosphorus (P) losses to a waterbody [1] resulting in eutrophication [2]

  • The aims of this study were: (i) to elucidate the effects of chemical treatment on the loss of NH3, CH4, N2O, and CO2 from dairy cattle slurry applied to grassland soils and (ii) to further refine the feasibility of using chemical amendment based on their potential for greenhouse warming effects

  • Lime, Polyaluminium chloride (PAC) and biochar addition resulted in a reduction in N2O emissions, but while the reductions associated with PAC and biochar were most likely due to N immobilisation, the lack of N2O associated with lime application was due to increased doi:10.1371/journal.pone.0111965.g006

Read more

Summary

Introduction

The land application of dairy cattle slurry to farmland can result in incidental and chronic phosphorus (P) losses to a waterbody [1] resulting in eutrophication [2]. Gaseous N loss from slurry due to the volatilisation of ammonia (NH3) is the major N loss pathway from slurry, resulting in a 50%-80% loss of total ammoniacal nitrogen (TAN). This represents both a considerable reduction in the N fertiliser value of slurry and a considerable source of atmospheric pollution as ammonia is both an acidifying gas and a source of terrestrial and aquatic eutrophication following deposition [7, 8, 9,10]. Landspreading can increase emissions of greenhouse gases (GHG), nitrous oxide (N2O) [11 12], and carbon dioxide (CO2) [13, 14] and methane (CH4) [15]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call