Abstract

Molecular Dynamics simulations are performed to investigate the influence of system boundaries and characteristic length (L) of the system on the mean free path (MFP) of rarefied gas confined to the walls of a nano-channel. Isothermal Lennard-Jones fluid confined between Reflective walls and platinum walls at different number densities (0.31 atoms/nm3 and 1.61 atoms/nm3) are independently considered. The MFP is calculated by the Lagrangian approach of tracking the trajectory of each atom and averaging the distance between successive collisions. The percentage of fluid–wall collisions is observed to predominate over fluid–fluid collisions at high levels of rarefaction. The influence of L (varying from 6 nm to 16 nm) on MFP is examined in this regime. At lower Knudsen number (Kn), it is observed that the effect of L on MFP is minimal. However, at higher rarefaction the characteristic dimension influences the MFP significantly for various wall configurations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.