Abstract

BackgroundThe aims of this pilot trial were to (i) test the hypothesis that modifying patterns of painful lumbo-pelvic movement using motion-sensor biofeedback in people with low back pain would lead to reduced pain and activity limitation compared with guidelines-based care, and (ii) facilitate sample size calculations for a fully powered trial.MethodsA multicentre (8 clinics), cluster-randomised, placebo-controlled pilot trial compared two groups of patients seeking medical or physiotherapy primary care for sub-acute and chronic back pain. It was powered for longitudinal analysis, but not for adjusted single-time point comparisons. The intervention group (n = 58) received modification of movement patterns augmented by motion-sensor movement biofeedback (ViMove, dorsaVi.com) plus guidelines-based medical or physiotherapy care. The control group (n = 54) received a placebo (wearing the motion-sensors without biofeedback) plus guidelines-based medical or physiotherapy care.Primary outcomes were self-reported pain intensity (VAS) and activity limitation (Roland Morris Disability Questionnaire (RMDQ), Patient Specific Functional Scale (PSFS)), all on 0–100 scales. Both groups received 6–8 treatment sessions. Outcomes were measured seven times during 10-weeks of treatment and at 12, 26 and 52 week follow-up, with 17.0 % dropout. Patients were not informed of group allocation or the study hypothesis.ResultsAcross one-year, there were significant between-group differences favouring the intervention group [generalized linear model coefficient (95 % CI): group effect RMDQ −7.1 (95 % CI–12.6;–1.6), PSFS −10.3 (−16.6; −3.9), QVAS −7.7 (−13.0; −2.4); and group by time effect differences (per 100 days) RMDQ −3.5 (−5.2; −2.2), PSFS −4.7 (−7.0; −2.5), QVAS −4.8 (−6.1; −3.5)], all p < 0.001. Risk ratios between groups of probability of improving by >30 % at 12-months = RMDQ 2.4 (95 % CI 1.5; 4.1), PSFS 2.5 (1.5; 4.0), QVAS 3.3 (1.8; 5.9).The only device-related side-effects involved transient skin irritation from tape used to mount motion sensors.ConclusionsIndividualised movement retraining using motion-sensor biofeedback resulted in significant and sustained improvements in pain and activity limitation that persisted after treatment finished. This pilot trial also refined the procedures and sample size requirements for a fully powered RCT.This trial (Australian New Zealand Clinical Trials Registry NCT01572779) was equally funded by dorsaVi P/L and the Victorian State Government.

Highlights

  • The aims of this pilot trial were to (i) test the hypothesis that modifying patterns of painful lumbo-pelvic movement using motion-sensor biofeedback in people with low back pain would lead to reduced pain and activity limitation compared with guidelines-based care, and (ii) facilitate sample size calculations for a fully powered trial

  • Individualised movement retraining using motion-sensor biofeedback resulted in significant and sustained improvements in pain and activity limitation that persisted after treatment finished

  • Confidence intervals used †Crude risk ratio = Movement Biofeedback Group / Guidelines-based Care Group. These unadjusted confidence intervals should be cautiously interpreted, as they do not account for any baseline imbalances or clustering effects RMDQ-23 = Roland Morris Disability Questionnaire (23 item version) where low scores are better, Patient-Specific Functional Scale (PSFS) = Patient Specific Functional Scale converted to a 0–100 scale where low scores are better, Quadruple pain Visual Analogue Scale (QVAS) = Average of four pain intensity VAS scales where low scores are better. This cluster-randomised pilot trial investigated whether changing patterns of lumbo-pelvic movement and/or posture using motion-sensor biofeedback in people with Low back pain (LBP) would lead to reduced pain and activity limitation, when compared with guidelines-based medical or physiotherapy care

Read more

Summary

Introduction

The aims of this pilot trial were to (i) test the hypothesis that modifying patterns of painful lumbo-pelvic movement using motion-sensor biofeedback in people with low back pain would lead to reduced pain and activity limitation compared with guidelines-based care, and (ii) facilitate sample size calculations for a fully powered trial. Low back pain (LBP) is highly prevalent and globally is the leading cause of disability, ahead of ischaemic heart disease, chronic obstructive pulmonary disease, major depressive illness, and other musculoskeletal disorders, including osteoarthritis [1]. It is costly, both at a personal and societal level, with estimates of direct and indirect costs ranging from 0.4 % to 1.7 % of GDP, depending on the country and the econometric model used [2, 3]. Short-term treatment effects typically reduce over the subsequent 12 months [9,10,11]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call