Abstract

Abstract This paper focuses on the relationship between heat treatment temperature toward structural transformation from amorphous carbon to highly graphitic carbon material during a production stage.The following report discusses a simple strategy to convert the palm kernel shell (PKS) into highly crystalline, high quality graphite via simple two-step process. The production involves impregnation of catalyst followed by thermal treatment. Both XRD and Raman spectroscopy allowed the observation of microstructural change of the prepared sample at temperature ranging from 1000°C to 1400°C using Ferum catalyst. From XRD pattern it can be observed that as graphitization temperature increased, the degree of graphitization also increased. Overall sample prepared at higher temperature 1400°C shows a higher degree of graphitization. PKS sample graphitized at 1400°C with the aid of Ferum catalyst shows a sharp intensified peak at 2θ = 26.5° reflecting formation of highly crystalline graphite structure. Raman spectrum also suggests similar results to XRD in which PKS-1400 shows the presence of large amount of graphitic structure as the value of (Id/Ig) ratio is lower than in other samples. HRTEM analysis visibly shows define lattice fringe, which further confirms the structural transformation from amorphous to highly ordered graphitic carbon structure. Overall, good quality graphitic carbon structure from Palm Kernel shell was succesfully synthesised via utilization of PKS, Ferum catalsyt and heat treatment method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.