Abstract

Two series of polyurethane elastomers were synthesized to investigate what effect does the incorporation of various new chain extenders have on the mechanical and thermal properties of polyurethane elastomers. The polyurethane soft segments were based on poly(e-caprolactone) polyol. The hard segment was based on 1,6-hexamethylene diisocyanate in combination with 2,5-dimethyl-3-hexine-2,5-diol (DHD), hexaethylene glycol, glycerin, or castor oil. The results showed that the degradation rate and mechanical properties of the final products can be controlled through the structure of diol chain extenders or/and hard segment cross-linking present in the polyurethane elastomers. The DHD-based polyurethane displayed a relatively low glass transition temperature of −57 °C and a tensile strength of 11–14 MPa and elongation at break of 600–700%. These kinds of materials have potential application in many domains.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.