Abstract

Abstract The present study investigated temporal aspects of cerebellar contributions to the processing of performance errors as indexed by the error-related negativity (ERN) in the response-locked event-related potential (ERP). We co-registered EEG and applied single-pulse transcranial magnetic stimulation (spTMS) to the left posterolateral cerebellum and an extra-cerebellar control region (vertex) while healthy adult volunteers performed a Go/Nogo Flanker Task. In Go trials, TMS pulses were applied at four different time points, with temporal shifts of -100 ms, -50 ms, 0 ms, or +50 ms relative to the individual error latency (IEL, i.e., individual ERN peak latency + median error response time). These stimulation timings were aggregated into early (-100 ms, -50 ms) and late (0 ms, +50 ms) stimulation for the analysis. In Nogo trials, TMS pulses occurred 0 ms, 100 ms, or 300 ms after stimulus onset. Mixed linear model analyses revealed that cerebellar stimulation did not affect error rates overall. No effects were found for response times. As hypothesized, ERN amplitudes were decreased for cerebellar stimulation. No significant differences were found for the error positivity (Pe). Similar to TMS application to probe cerebellar-brain inhibition in the motor domain, the inhibitory tone of the cerebellar cortex may have been disrupted by the pulses. Reduced inhibitory output of the cerebellar cortex may have facilitated the processing of error information for response selection, which is reflected in a decreased ERN.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call