Abstract

Inadequately polymerized resin cements may negatively affect the clinical performance of cemented all-ceramic restorations. The purpose of this in vitro study was to evaluate the effect of ceramic thickness and shade on the microhardness of various light-cured (LC) and dual-cured (DC) resin cements. The amount of light transmission through the restoration was also evaluated to correlate the results. Three different brands of resin cements (Appeal/Ivoclar; Calibra/Dentsply; Nexus 2/Kerr) were used in LC and DC forms to prepare disk-shaped samples (0.5-mm thickness × 5-mm diameter) (n=15). Study group samples were light-cured for 40 seconds (Flashlite 1401/Discus Dental) through four shades (ETC1, ETC2, ETC3, ETC4) and four thicknesses (1 mm, 2 mm, 3 mm, 4 mm) of all-ceramic ingot discs (IPS Empress Esthetic/Ivoclar). Control samples were directly cured without the presence of ceramic. The light transmission through various shades and thicknesses of ceramics was measured using a hand-held radiometer (Demetron, Kerr). Vickers microhardness measurements were performed (Micromet/Buehler) at 24 hours following dark storage in 37°C water. Correlation between ceramic shade, thickness, and light intensity readings (mW/cm2) with respect to microhardness was statistically evaluated using analysis of variance (p=0.05). Ceramic thickness of 3 mm and/or above significantly decreased the microhardness values in all LC and DC groups (p<0.0001). Ceramic shade had a significant effect only on Calibra in both LC and DC groups (p<0.0001). Microhardness values of LC groups were significantly lower than DC groups (p<0.0001). Control groups had significantly higher hardness values in all cement groups (p<0.0001). There was a significant correlation between the amount of light transmitted and hardness (p=0.000). The ceramic thickness has a more intense effect on polymerization compared to the ceramic shade. Overlying ceramic thickness of 3 mm and above was found to adversely affect the polymerization of LC and DC resin cements and therefore a 3-mm thickness was considered the critical threshold.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.