Abstract

To investigate the resistance of an implant crown telescopically engaged to a geometrically defined hexagonal abutment with and without cement under compressive dynamic cyclic fatigue loading. 40 crowns, 9 mm in height, were cast from prefabricated plastic copings, each telescopically engaged to a 3-mm-high machined hexagonal abutment. 20 crowns were retained with zinc phosphate cement, and 20 crowns were retained with a screw. A vertical load of 15 kg was applied to all samples under oscilla)on. A Periotest was used to measure the mobility of the implant crown in Periotest values (PTV). Test endpoints were defined by the following: fatigue cycles ≥ 20 million; crown PTV > 10; or if samples became visibly loose or component fracture. Cement-retained crowns failed on average at 2.60 x 106 cycles ± 2.27, while screw-retained crown samples failed at 2.17 x 106 cycles ± 1.27 with no significant difference (P > .05). Implant and abutment screw fractures were the most prevalent mode of failure in the cement-retained group, while in the screw-retained group, failures were caused by the loosening of one or both screw joints. The rate of increase in PTV was higher in the screw-retained group than in the cement-retained group. Under the experimental conditions, an implant crown telescopically engaged vertically to a 3-mm-tall hexagonal abutment, under compressive dynamic cyclic fatigue loading with or without cement, demonstrated no differences in resistance or failure outcomes. A cement-retained implant crown with telescopic engagement to the abutment is more rigid, resulting in more implant and abutment screw fractures than loosening.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.