Abstract

Different cellulose nanocrystal (CNC) forms (dried vs never-dried) can lead to different degrees of CNC reassembly, the formation of nanofibril-like structures, in nanocomposite latex-based pressure-sensitive adhesive (PSA) formulations. CNC reassembly is also affected by CNC sonication and loading as well as the protocol used for CNC addition to the polymerization. In this study, carboxylated CNCs (cCNCs) were incorporated into a seeded, semibatch, 2-ethylhexyl acrylate/methyl methacrylate/styrene emulsion polymerization and cast as pressure-sensitive adhesive (PSA) films. The addition of CNCs led to a simultaneous increase in tack strength, peel strength, and shear adhesion, avoiding the typical trade-off between the adhesive and cohesive strength. Increased CNC reassembly resulted from the use of dried, redispersed, and sonicated cCNCs, along with increased cCNC loading and addition of the cCNCs at the seed stage of the polymerization. The increased degree of CNC reassembly was shown to significantly increase the shear adhesion by enhancing the elastic modulus of the PSA films.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.