Abstract

Polyaniline (PANI) is synthesized in the potentiostatic pulse mode from an electrolyte containing Ce2(SO4)3. Cations Ce3+ are incorporated into the polymer composition during PANI redox transformations. It is shown that PANI in its conducting and dielectric forms contains different amounts of Ce3+ cations. Starting with the beginning of polymerization, the Ce3+ cations actively form the special polymer morphology as demonstrated by SEM images. The chief consequence of the formation of so well-developed uniform nanostructure is that the latter allows the dopant anions, cations, and protons to easily enter and leave it. This, in turn, results in the high electrochemical activity of this polymer and enhances the conductivity of PANI samples doped with Ce3+ cations as compared with those doped with only protons.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call