Abstract
The deposition characteristics of metalorganic chemical vapor deposition (MOCVD) Cu using (hfac)Cu(1,5-COD)(1,1,1,5,5,5-hexafluro-2,4pentadinato Cu(I) 1,5-cyclooctadiene) as a precursor have been investigated in terms of carrier gas effects and adding H(hfac) to the carrier gas stream. Using hydrogen carrier gas led to a higher MOCVD Cu deposition rate and a lower film resistivity compared to an argon carrier gas system. Improvements in surface roughness of the MOCVD Cu films and a (111) preferred orientation texture were obtained by using hydrogen as a carrier gas. When a ligand such as H(hfac) was added to Ar carrier gas, the deposition rate was significantly enhanced. Moreover, H(hfac) added to both carrier gas streams led, to lower MOCVD Cu film resistivity. However, film adhesion was somewhat weak compared to that observed with the Ar or H2 carrier gas system, probably due to the larger F content near the interface between the copper and the titanium-nitride film. In conclusion, smooth Cu films with a low resistivity can be obtained by manipulating the deposition conditions, such as carrier gas type and ligand addition. The deposition mechanism of MOCVD Cu is also discussed in the paper.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.