Abstract

In this work, an analytical solution is proposed to explain the influence of carbon on the transition from graphite to cementite eutectic in cast iron. The outcome from this work indicates that this transition can be related to (a) the graphite nucleation potential (directly characterized by the cell count, N and indirectly by the nucleation coefficients Ns and b), (b) the eutectic graphite growth rate coefficient, μ, (c) the temperature range, ∆Tsc = Ts − Tc (where Ts and Tc are the equilibrium temperature for graphite eutectic and the formation temperature for cementite eutectic, respectively), and (d) the liquid volume fraction, f, after pre-eutectic austenite solidification. In addition, the absolute and the relative chilling tendencies, CT and CTr, respectively, as well as the critical cooling rate, Qcr, and the chill width, w, can be predicted from this work. The analytical model was experimentally verified for castings with various carbon contents. It was found that the carbon content increases the eutectic cell count, N while reducing the maximum degree of undercooling at the onset of graphite eutectic solidification, ∆Tm. From this work it is evident that the main role of carbon on the transition from graphite to cementite eutectic is through its effect on increasing the growth coefficient and hence, the graphite eutectic growth rate, u. Moreover, at increasing carbon contents the absolute and the relative chilling tendencies including the chill width, all are significantly reduced. Finally, the equations derived using theoretical arguments for the chill width are rather similar to expressions based on a statistical analysis of the experimental outcome.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call