Abstract

The influence of carbon and germanium on phase transformation and sheet resistance of Ni on epitaxially grown Si1−x−yGexCy (0⩽x⩽0.24 and 0⩽y⩽0.01) layers annealed in a temperature range of 360 to 900 °C has been investigated. The role of strain relaxation or compensation in the reaction of Ni on Si1−x−yGexCy layers due to Ge or C out-diffusion to the underlying layer during the phase transformation has also been investigated. The formed NiSiGe layers were crystalline, with strong (020)/(013) growth orientation in the direction, but the thermal stability decreased rapidly with increasing Ge amount due to agglomeration. However, this thermal behavior was shifted to higher annealing temperatures when carbon was incorporated in the SiGe layers. A carbon accumulation at the interface of NiSiGeC/SiGeC has been observed even at low-temperature annealing, which is suggested to retard the phase transformation and agglomeration of Ni/SiGeC system.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.