Abstract
Nickel is known to increase the resistance to cleavage fracture of iron and decrease a ductile-to-brittle transition temperature. The medium-carbon, low-alloy martensitic steels attain the best combination of properties in low-tempered condition, with tempered martensite, retained austenite and transition carbides in the microstructure. This paper is focused on the influence of Ni addition (from 0.35 to 4.00%) on the microstructure and fracture toughness of structural steels after tempering. In this research, four model alloys of different concentration of Ni and constant concentration of carbon and other elements were used. All samples were in as-quenched and tempered conditions. Quenching was performed in oil at room temperature. After quenching, samples were tempered at 200 degrees C for 2 h. The microstructure of the investigated steels was analyzed using JEM200CX transmission electron microscope. An increase of nickel content in the investigated structural steels causes a decrease of epsilon carbide concentration in their microstructure after tempering. In these steels, cementite precipitates independently in the boundaries of martensite needles and in the twin boundaries in the areas where the Fe(2.4)C carbide has been dissolved. These results will be used to design new technologies of tempering of structural steels with nickel addition.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.