Abstract

The benefits of high exogenous glucose availability for endurance exercise performance are well-established. Exogenous glucose oxidation rates are thought to be limited by intestinal glucose transport. Extracellular calcium in rodent intestine increases the translocation of the intestinal glucose transporter GLUT2 which, if translated to humans, could increase the capacity for exogenous glucose availability during exercise. Therefore, this pilot study aimed to explore the effect of calcium co-ingestion during endurance exercise on exogenous glucose oxidation in healthy men. Eight healthy men cycled for 2 h at 50% peak power output, ingesting either 1.2 g min−1 dextrose alone (GLU) or with the addition of 2000 mg calcium (GLU + CAL), in a randomised crossover design. Expired breath samples were collected to determine whole-body and exogenous glucose oxidation. Peak exogenous glucose oxidation during GLU was 0.83 ± 0.15 g min−1, and was not enhanced during GLU + CAL (0.88 ± 0.11 g min−1, p = 0.541). The relative contributions of exogenous carbohydrate (19 ± 3% vs. 20 ± 2%, p = 0.434), endogenous carbohydrate (65 ± 3% vs. 65 ± 3%, p = 0.822) and fat (16 ± 3% vs. 15 ± 3%, p = 0.677) to total substrate utilisation did not differ between trials. These results suggest the addition of calcium to glucose ingestion, at saturating glucose ingestion rates, does not appear to alter exogenous glucose oxidation during endurance exercise in healthy men.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.