Abstract
Extreme thermostabilities of proteins can be achieved by binding co-factors to the protein structures. For various α-amylases protein stabilization upon calcium binding is a well-known phenomenon. In the present study the mechanism of stabilization of three homologous α-amylases was investigated by measuring the unfolding kinetics with CD spectroscopy. For this purpose thermal unfolding kinetics of calcium saturated and calcium depleted enzymes were analyzed by means of Eyring-plots. The free energy change between the native and the transition state which characterized the unfolding barrier height was found to be proportional to the number of calcium ions bound to the protein structures. For the most thermostable α-amylases calcium binding caused a significant increase in the enthalpy change, which was partly compensated by increased entropy changes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.