Abstract

Cadmium is a natural and widely distributed toxicant, and can be commonly found in environment. Intestinal microbiota plays a very important role in maintaining its host's health. The effects of cadmium on the intestinal microbiota composition and stability of amphibians are little known. We exposed Rana chensinensis (R. chensinensis) embryos to different concentrations of cadmium (0, 112 and 448 μg Cd L−1) until they reached Gosner stage 38, and analyzed their microbial communities using 16S rRNA amplicon sequencing. By measures of both alpha and beta diversity, intestinal microbial communities were significantly differentiated in 448 μg Cd L−1 exposure groups. Cadmium exposure significantly altered the intestinal microflora diversity and composition of R. chensinensis. At the phylum level, it is worth noting that Fusobacteria and Spirochaetae were not detected in 448 μg Cd L−1 exposure groups. Firmicutes rapidly decreased in 448 μg Cd L−1 exposure group. At the genus level, Succinispira (Firmicutes), Desulfovibrio (Proteobacteria) and Fusobacterium (Fusobacteria) vanished in 448 μg Cd L−1 exposure groups. Our results demonstrate that cadmium exposure changed the composition and decreased the community diversity of intestinal microbiota of R. chensinensis tadpoles. Our study may provide a new framework based on intestinal microbiota to evaluate the response of amphibians to environmental chemicals pollution.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call