Abstract

Humans naturally select a cadence that minimizes metabolic cost at a constant walking velocity. The aim of this study was to examine the effects of cadence on the medial gastrocnemius (MG) muscle and tendon interaction, and examine how this might influence lower limb energetics. We hypothesized that cadences higher than preferred would increase MG fascicle shortening velocity because of the reduced stride time. Furthermore, we hypothesized that cadences lower than preferred would require greater MG fascicle shortening to achieve increased muscle work requirements. We measured lower limb kinematics and kinetics, surface electromyography of the triceps surae and MG fascicle length, via ultrasonography, during walking at a constant velocity at the participants' preferred cadence and offsets of ±10%, ±20%, and ±30%. There was a significant increase in MG fascicle shortening with decreased cadence. However, there was no increase in the MG fascicle shortening velocity at cadences higher than preferred. Cumulative MG muscle activation per minute was significantly increased at higher cadences. We conclude that low cadence walking requires more MG shortening work, while MG muscle and tendon function changes little for each stride at higher cadences, driving up cumulative activation costs due to the increase in steps per minute.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call