Abstract
Buoyancy-induced secondary flows in a heated pipe rotating about a parallel axis are similar to those in a stationary horizontal heated pipe. The effect of buoyancy on fully developed laminar flows and heat transfer in rotating pipes and in horizontal pipes is studied by similarity analysis and computations. The similarity analysis reveals that the flows are characterized by a new fundamental parameter, KLB, and the Prandtl number, Pr;KLBplays a role of Peclet number in the cross-section and Pr determines the sensitivity of the axial primary flow to secondary flow. Heat transfer is basically independent of Pr. Based on the dimensionless governing equations, limiting behaviours of velocity and temperature fields are discussed. Similarity conclusions are supported by computational results of contours of velocity and temperature, the friction factor and heat transfer rate. Semi-empirical formulae for the friction factor and the Nusselt number are presented.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.