Abstract

The aim was to investigate the effects of monochromatic and broadband stimuli on the amplitude of the photopic negative response (PhNR) and to compare the sensitivities of these stimuli for the detection of ganglion cell damage in glaucoma patients. Forty-one healthy subjects were studied, along with 16 patients with open-angle glaucoma. Photopic electroretinograms (ERGs) were elicited with monochromatic red, amber, green, and broadband white stimuli of progressively brighter intensities in a blue background. Pattern ERGs were also recorded using a 0.8 degrees checkerboard pattern on a 21.6 degrees x 27.8 degrees screen. In the photopic ERGs of the control subjects, the PhNR amplitude was significantly higher (P < 0.01) to red than to monochromatic amber, green, and broadband white stimuli of the same intensity. In glaucoma patients, the percentage of amplitude reduction was greater for the PhNR to red (68%, P < 0.001) than to the broadband stimulus (38%, P = 0.001). The PhNR to red monochromatic stimulus appeared to be a more sensitive parameter, with a larger area enclosed by the receiver-operating characteristic curve (0.97) than for the PhNR to broadband stimulus (0.76). Also, the PhNR to red stimulus showed a more significant correlation with the pattern ERG and the visual field defects (P < 0.05) than the PhNR elicited with broadband stimulus. These findings suggest that ganglion cell activity can be more efficiently evaluated with the PhNR elicited with a red than with a broadband stimulus. The PhNR thus appears to be a promising test for the diagnostics of the ganglion cell dysfunction.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call