Abstract

Background and purpose: To assess the impact of both set-up errors and respiration-induced tumor motion on the cumulative dose delivered to a clinical target volume (CTV) in lung, for an irradiation based on current clinically applied field sizes. Materials and methods: A cork phantom, having a 50 mm spherically shaped polystyrene insertion to simulate a gross tumor volume (GTV) located centrally in a lung was irradiated with two parallel opposed beams. The planned 95% isodose surface was conformed to the planning target volume (PTV) using a multi leaf collimator. The resulting margin between the CTV and the field edge was 16 mm in beam's eye view. A dose of 70 Gy was prescribed. Dose area histograms (DAHs) of the central plane of the CTV (GTV+5 mm) were determined using radiographic film for different combinations of set-up errors and respiration-induced tumor motion. The DAHs were evaluated using the population averaged tumor control probability (TCP pop) and the equivalent uniform dose (EUD) model. Results: Compared with dose volume histograms of the entire CTV, DAHs overestimate the impact of tumor motion on tumor control. Due to the choice of field sizes a large part of the PTV will receive a too low dose resulting in an EUD of the central plane of the CTV of 68.9 Gy for the static case. The EUD drops to 68.2, 66.1 and 51.1 Gy for systematic set-up errors of 5, 10 and 15 mm, respectively. For random set-up errors of 5, 10 and 15 mm (1 SD), the EUD decreases to 68.7, 67.4 and 64.9 Gy, respectively. For similar amplitudes of respiration-induced motion, the EUD decreases to 68.8, 68.5 and 67.7 Gy, respectively. For a clinically relevant scenario of 7.5 mm systematic set-up error, 3 mm random set-up error and 5 mm amplitude of breathing motion, the EUD is 66.7 Gy. This corresponds with a tumor control probability TCP pop of 41.7%, compared with 50.0% for homogeneous irradiation of the CTV to 70 Gy. Conclusion: Systematic set-up errors have a dominant effect on the cumulative dose to the CTV. The effect of breathing motion and random set-up errors is smaller. Therefore the gain of controlling breathing motion during irradiation is expected to be small and efforts should rather focus on minimizing systematic errors. For the current clinically applied field sizes and a clinically relevant combination of set-up errors and breathing motion, the EUD of the central plane of the CTV is reduced by 3.3 Gy, at maximum, relative to homogeneous irradiation of the CTV to 70 Gy, for our worst case scenario.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call