Abstract

Abstract This paper examines how slowly varying topography induces changes in all aspects of long planetary wave propagation, including phase speed and surface signature, through steering effects. The approach introduces a method for the exact solution of the vertical topographic eigenvalue problem for arbitrary realistic stratification and ray theory in the horizontal. It is shown that, for observed stratifications, first internal mode topographic waves have phase speeds between about 0.4 and twice the local flat-bottom phase speed. Increases occur on the western and equatorward sides of hills. Focusing of ray trajectories and caustics are common features of the solutions. Despite a bias between slowdown and speedup, on average there is little speedup except in high latitudes (where long-wave theory is less applicable). Calculations are performed for five main ocean basins, assuming waves are generated at the eastern coastline, using smoothed topography. These calculations confirm the above findings: the...

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.