Abstract

The effect of boron on the abrasive wear behavior of the austenitic Fe–Cr–C–Si–B hardfacing alloys was investigated with varying boron concentration. It was found that the abrasive wear resistance of the hardfacing alloys increased up to 50% compared to that of boron-free alloys with increasing boron concentration. The mechanism of the abrasive wear resistance changed at 0.6wt.% boron. Below 0.6wt.% boron concentration, the abrasive wear resistance was improved almost linearly and strain-induced martensitic transformation was considered as the controlling factor for improving the resistance. Above 0.6wt.% boron, it was observed that the primary borides started to precipitate. Further increase in boron concentration was not able to enhance the resistance due to the negligible change of primary borides’ size and volume fraction. With these results, it was concluded that two different effects of boron on the wear resistance of the austenitic Fe–Cr–C–Si–B hardfacing alloys existed depending on the boron concentration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.