Abstract

Literature reports and theoretical considerations suggest that body cooling may affect respiratory mechanics in vivo. To examine this hypothesis, healthy rats were studied using the end-inflation occlusion method under control conditions and after total body cooling. Respiratory mechanics parameters, hysteresis areas, the inspiratory work of breathing, and its elastic and resistive components, were calculated. After body cooling (mean rectal temperature from 36.6±0.25 to 32.1±0.26°C), the ohmic and the additional visco-elastic respiratory system resistances, the hysteresis, the total inspiratory work of breathing, and its resistive components, were all increased. No significant changes were detected for the static and dynamic respiratory system elastance mean values, and the related elastic component of the work of breathing. These data indicate that body cooling increases the mechanical inspiratory work of breathing by increasing the resistive pressures dissipation. This effect is evident even for limited temperature variations, and it is suggested that it may occur in the event of accidental or therapeutic hypothermia.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.