Abstract

Application of biochar has been demonstrated to be a successful strategy for boosting soil carbon sequestration and altering the agricultural soil carbon cycle. However, in the studies involving biochar worldwide, the effects of different types of biochar on the soil carbon component response direction and increase are not consistent. Therefore, to assess the effects of applying four types of biochar during the soil carbon cycle on carbon components on a farmland, we performed a meta-analysis of 1150 comparisons from 86 peer-reviewed publications. Generally speaking, the types of biochar raw materials have a significant impact on soil carbon cycle. The application of chaff biochar significantly inhibited (10.0 %) soil respiration, while the application of manure biochar (47.0 %), straw biochar (11.2 %) and wood biochar (8.7 %) showed a strong promotion effect on CO2 emission. In addition, although the soil organic C, microbial biomass C and dissolved organic C all had positive responses to the application of the four biochar types, the degree and increase in their response varied greatly due to the differences in biomass raw materials. Moreover, by increasing the biochar rates applied to coarse-textured soils with low average annual rainfall and an average temperature under controlled circumstances, the relative increase in SOC was encouraged. Meanwhile, applying low temperature pyrolytic biochar (≤400 °C) at a lower rate (<25 t/ha) in the long-term experiment (>3 years) is more beneficial to soil C sequestration and emission reduction. Hence, climatic conditions, agricultural management practices, and initial soil properties jointly constrained and influenced the ability of biochar to alter the soil C cycle. Based on this, our research offers a fresh viewpoint for making a profound study biochar-enhanced soil C cycle.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.