Abstract

Unbound bilirubin is oxidized to nearly colourless substances in the presence of H2O2 or ethyl hydroperoxide and horseradish peroxidase. To predict the risk of kernicterus (degenerated yellow pigmentation of nerve cells), this principle has been widely utilized for estimating the concentration of unbound bilirubin in hyperbilirubinaemic serum. However, the serum contains polar geometric photoisomers of bilirubin. Therefore, to clarify the effect of bilirubin photoisomer concentrations on unbound-bilirubin concentration, the concentration of bilirubin and its photoisomer and of unbound bilirubin in samples obtained from experiments in vivo and in vitro were simultaneously and individually estimated by h.p.l.c. and the peroxidase method. During photoirradiation, both in vivo and in vitro, the serum polar (ZE)-bilirubin IX alpha concentration increased remarkably, but unbound-bilirubin values were not affected at all. However, during experiments in vitro, unbound bilirubin concentrations increased only when concentrations of the rather polar (EZ)- and (EE)-cyclobilirubin IX alpha increased considerably in a human serum albumin-bilirubin solution irradiated with blue light. Thus it is concluded that unbound-bilirubin concentrations, and consequently the initial rate of the peroxidase reaction, is not accelerated by the increase in either (ZE)-bilirubin or (EZ)-cyclobilirubin concentration within the clinically observed range.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call