Abstract

Pure bismuth ferrite (BFO) and BFO with impurity phases (Bi2O3 or Fe2O3) were synthesized by the hydrothermal method. Complex dielectric permittivity (ε) and electrical conductivity (σ) were determined by complex impedance measurements at different frequencies (200 Hz–2 MHz) and temperatures (25–290) °C. The conductivity spectrum of samples, σ(f), complies with Jonscher’s universal law and the presence of impurity phases leads to a decrease in the static conductivity (σDC); this result is correlated with the increased thermal activation energy of the conduction in impure samples compared to the pure BFO sample. The conduction mechanism in BFO and the effect of impurity phases on σ and ε were analyzed considering the variable range hopping model (VRH). Based on the VRH model, the hopping length (Rh), hopping energy (Wh) and the density of states at the Fermi level (N(EF)) were determined for the first time, for these samples. In addition, from ε(T) dependence, a transition in the electronic structure of samples from a semiconductor-like to a conductor-like behavior was highlighted around 465–490 K for all samples. The results obtained are useful to explain the conduction mechanisms from samples of BFO type, offering the possibility to develop a great variety of electrical devices with novel functions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.