Abstract

The bedding planes of unconventional oil and gas reservoirs are relatively well developed. Bedding planes directly interfere with hydraulic fracture expansion. Determining how bedding planes influence hydraulic fractures is key for understanding the formation and evolution of hydraulic fracturing networks. After conducting X-ray diffraction analysis of shale, we used Python programming to establish a numerical model of mineral heterogeneity with a 0-thickness cohesive element and a bedding plane that was globally embedded. The influence of the bedding-plane angle on hydraulic fracture propagation was studied. Acoustic emission (AE) data were simulated using MATLAB programming to study fracture propagation in detail. The numerical simulation and AE data showed that the propagation paths of hydraulic fractures were determined by the maximum principal stress and bedding plane. Clearer bedding effects were observed with smaller angles between the bedding surface and the maximum principal stress. However, the bedding effect led to continuous bedding slip fractures, which is not conducive to forming a complex fracture network. At moderate bedding plane angles, cross-layer and bedding fractures alternately appeared, characteristic of intermittent dislocation fracture and a complex fracture network. During hydraulic fracturing, tensile fractures represented the dominant fracture type and manifested in cross-layer fractures. We observed large fracture widths, which are conducive to proppant migration and filling. However, the shear fractures mostly manifested as bedding slip fractures with small fracture widths. Combining the fracture-network, AE, and fractal dimension data showed that a complex fracture network was most readily generated when the angle between the bedding plane and the maximum principal stress was 30°. The numerical simulation results provide important technical information for fracturing construction, which should support the efficient extraction of unconventional tight oil and gas.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call