Abstract

The beam directivity from an ultrasonic transducer in isotropic materials is well documented. However, beam directivities in elastically anisotropic materials and their effect on ultrasonic NDE inspection has been investigated far less extensively. In this paper, analytical and numerical finite element models are developed to predict the beam directivity in a single crystal nickel-based superalloy. This material is highly anisotropic and is used widely in the gas-turbine industry. The developed models are used to investigate the effect of the crystallographic orientation on the beam directivity. In turn, the effect of beam directivity on defect detection sensitivity and characterization capability using an ultrasonic array is demonstrated. It is shown that the effect is particularly important for the accurate sizing of small defects.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.