Abstract

The ability of the hammerhead ribozyme to distinguish between matched and mismatched substrates was evaluated using two kinetically defined ribozymes that differed in the length and sequence of the substrate recognition helices. A mismatch in the innermost base pair of helix I affected k2, the chemical cleavage step, while more distal mismatches had no such effect. In contrast, mismatches in any of the four innermost base pairs of helix III affected k2. Chase experiments indicated that mismatches also increased the rate of substrate dissociation by at least 20-100-fold, as expected from the stabilities of RNA helices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.