Abstract

ABSTRACTIn this essay, the effect of the morphology of the CeO2 support and the Ba promoter on the ammonia synthesis reaction was studied. CeO2 support with {110} and {100} crystal planes and more oxygen vacancies enhanced the catalytic activity of ammonia synthesis. The relatively uniform microspheres structure CeO2 support (CeO2-MS) with {110} and {100} crystal planes was synthesized. The structural functions of the as-synthesized CeO2 support for the Ru-based catalyst were investigated in the ammonia synthesis reaction. The results of catalytic performance showed that the catalytic activity of 2.5%Ru/CeO2-MS catalyst reached 8940 μmol· g−1· h−1 at 450 ℃, 3.8 MPa, H2/N2 = 3 (60 mL∙min−1), which is higher nearly 2.5 times than the 2.5%Ru/CeO2-commercial (CeO2-C). And the catalytic activity of catalysts increased with the increase of reaction temperature. The activity of 6%Ba-2.5%Ru/CeO2-MS (24000 μmol· g−1· h−1) catalyst increased about 268% than that of catalyst without addition of Ba. Their physical and chemical properties were characterized by XRD, BET, HRTEM, H2-TPR, H2-TPD, and XPS analyses. Our results indicate that the 2.5%Ru/CeO2-MS catalyst and catalysts involving promoters (Cs, K, and Ba) exhibit significant support-morphology-dependent catalytic activity for ammonia synthesis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call