Abstract

Ultrahigh-modulus polyethylene fibers were treated with atmospheric pressure He plasma on a capacitively coupled device at a frequency of 7.5 kHz and a He partial vapor pressure of 3.43 × 103 Pa. The fibers were treated for 0, 1, and 2 min. Microscopic analysis showed that the surfaces of the fibers treated with He plasma were etched and that the 2-min He plasma-treated group had rougher surfaces than the 1-min He plasma-treated group. XPS analysis showed a 200% increase in the oxygen content and a 200% increase in the concentration of C—O bonds (from 11.4% to 31%) and the appearance of C=O bonds (from 0% to 7.6%) on the surface of plasma-treated fibers for the 2-min He plasma-treated group. In the microbond test, the 2-min He plasma-treated group had a 100% increase of interfacial shear strength over that of the control group, while the 1-min He plasma-treated group did not show a significant difference from the control group. The 2-min He plasma-treated group also showed a 14% higher single-fiber tensile strength than the control group.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.