Abstract

AbstractThe role of dust as a source of bioavailable phosphorus (Bio‐P) is quantified using a new parameterization for apatite dissolution in combination with global soil data maps and a global aerosol transport model. Mineral dust provides 31.2 Gg‐P/year of Bio‐P to the oceans, with 14.3 Gg‐P/year from labile P present in the dust, and an additional 16.9 Gg‐P/year from acid dissolution of apatite in the atmosphere, representing an increase of 120%. The North Atlantic, northwest Pacific, and Mediterranean Sea are identified as important sites of Bio‐P deposition from mineral dust. The acid dissolution process increases the fraction of total‐P that is bioavailable from ~10% globally from the labile pool to 18% in the Atlantic Ocean, 42% in the Pacific Ocean, and 20% in the Indian Ocean, with an ocean global mean value of 22%. Strong seasonal variations, especially in the North Pacific, northwest Atlantic, and Indian Ocean, are driven by large‐scale meteorology and pollution sources from industrial and biomass‐burning regions. Globally constant values of total‐P content and bioavailable fraction used previously do not capture the simulated variability. We find particular sensitivity to the representation of particle‐to‐particle variability of apatite, which supplies Bio‐P through acid‐dissolution, and calcium carbonate, which helps to buffer the dissolution process. A modest 10% external mixing results in an increase of Bio‐P deposition by 18%. The total Bio‐P calculated here (31.2 Gg‐P/year) represents a minimum compared to previous estimates due to the relatively low total‐P in the global soil map used.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.