Abstract
The effects of artificial destratification on limnological conditions and on phytoplankton were surveyed for 6 years (1995-2000) in Lake Dalbang (South Korea), a water supply reservoir receiving nutrients from agricultural non-point sources. In order to reduce odor problems caused by cyanobacterial blooms, six aerators were installed in 1996 and operated regularly during the warm season. Aeration destratified the water column of the reservoir and produced homogeneous physical and chemical parameters. The maximum surface temperature in summer decreased from 28.9 °C before aeration to 20.0-26.4 °C after aeration, whereas the maximum hypolimnetic temperature increased from 8.0 to 17.0-23.7 °C. Despite these changes, surface water concentrations of total phosphorus (TP) and chlorophyll a(CHLA) and their seasonal patterns did not change with destratification. Phosphorus loading was concentrated in heavy rain events during the summer monsoon, and TP and CHLA reached maximal concentrations in late summer after the monsoon. Because the hypolimnion was never anoxic prior to aeration, internal loading did not seem to be substantial. Cyanobacteria were the dominant phytoplankton in summer before aeration, but diatoms replaced them after operation of the aerator. Cyanobacteria blooms were eliminated. In contrast, total algal biomass in the water column (as CHLA integrated over depth) increased from 190 mg m−2 in 1995 to 1150, 300, 170, and 355 mg m−2 in 1997, 1998, 1999, and 2000, respectively. The increased ratio of mixing depth to euphotic depth to 2.5 may have resulted in a net reduction in the amount of underwater irradiance experienced by phytoplankton cells, and this may have favored the switch to diatom dominance. Furthermore, the mixing may have allowed diatoms to flourish in summer by lowering their settling loss that would be critical in stratified water columns. In conclusion, the destratification in this reservoir was effective in preventing cyanobacteria blooms, but not in reducing the total algal standing crop.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.