Abstract

KY3F10:Ho3+ thin films were deposited by a pulsed laser deposition technique with Nd–YAG laser radiation (λ = 266 nm) on (100) silicon substrate. The XRD and FE-SEM results show improved crystalline structure for the film deposited at a pressure of 1 Torr. The AFM results show that the RMS roughness of the films increases with rise in argon gas pressure. The EDS elemental mapping shows Y-excess for all the films deposited under all pressures, and this is attributed to its higher mass and low volatility as compared to K and F. XPS analysis further confirmed Y-excess in the deposited films. Green PL emission at 540 nm was investigated at three main excitation wavelengths, namely 362, 416 and 454 nm. The PL emission peaks increase with rise in background argon gas pressure for all excitation wavelengths. The highest PL intensity occurred at excitation of 454 nm for all the thin films. In addition, faint red (near infrared) emission was observed at 750 nm for all the excitations. The green emission at 540 nm is ascribed to the 5F4–5I8 and 5S2–5I8 transitions, and the faint red emission at 750 nm is due to the 5F4–5I7 and 5S2–5I7 transitions of Ho3+.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call