Abstract

α-Crystallin is a protein that is expressed at high levels in all vertebrate eye lenses. It has a molecular weight of 20 kDa and is composed of two subunits: αA and αB. α-Crystallin is a member of the small heat shock protein (sHsps) family that has been shown to prevent protein aggregation. Small molecules are organic compounds that have low molecular weight (<800 Da). Arginin (Arg) is a small molecule and has been shown to prevent protein aggregation through interaction with partially folded intermediates. In this study, the effect of Arg on the chaperone activity of α-crystallin in the presence of dextran, as a crowding agent, against ordered and disordered aggregation of different target proteins (α-lactalbumin, ovotransferrin, and catalase) has been investigated. The experiments were done using visible absorption spectroscopy, ThT-binding assay, fluorescence spectroscopy, and CD spectroscopy. The results showed that in amorphous aggregation and amyloid fibril formation, both in the presence and absence of dextran, Arg had a positive effect on the chaperone action of α-crystallin. However, in the presence of dextran, the effect of Arg on the chaperone ability of α-crystallin was less than in its absence. Thus, our result suggests that crowding interior media decreases the positive effect of Arg on the chaperone ability of α-crystallin. This is a very important issue, since we are trying to find a mechanism to protect living cells against the toxic effect of protein aggregation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call