Abstract
Resource-efficient food production practices are needed to support a sustainable food system. Aquaponics, a system where fish and produce are grown symbiotically in the same water circulating system, minimizes water usage, fertilizer input, and waste production. However, the impact of aquaponics on produce quality is underexplored. We utilize objective testing, descriptive analysis, and consumer acceptance to characterize the impact of aquaponics on tomato quality. Two tomato varieties were grown in an aquaponics system and compared with soil-grown controls across 3years. Safety was assessed by analyzing coliforms and confirming the absence of Escherichia coli. Weight, texture, color, moisture, titratable acidity, brix, and phenolic and antioxidant measurements were assessed. A semitrained descriptive sensory panel assessed 13 tomato attributes and acceptance was determined using untrained participants. Aquaponic tomatoes were frequently lighter and yellower in color and lower in brix. Descriptive analysis indicated significant differences in several sensory attributes, though these findings were inconsistent between years and varieties. Nutrient deficiencies may explain quality differences, as iron supplementation improved outcomes. Notably, the objective and descriptive differences minimally impacted consumer acceptance, as we found no significant differences in taste, texture, or appearance liking between production method in either variety. Despite variation in produce quality across years, aquaponics tomatoes pose minimal E. coli risk and are liked as much as soil-grown tomatoes. These findings demonstrate that aquaponics can produce products that are as acceptable as their soil-grown counterparts. PRACTICAL APPLICATION: Aquaponic tomatoes are as safe as soil-grown tomatoes. Furthermore, aquaponics tomatoes are liked as much as soil-grown tomatoes. Careful monitoring of nutrients in an aquaponic system may optimize quality. Overall, aquaponics has a minimal impact on tomato quality and thus is a sustainable food production method that can compete with conventional products on quality.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.