Abstract

Aims and backgroundA more pronounced characteristic of cancer cells is the energy dependence on glucose, which mitigated by glucose transporters. The comprehension of the regulatory mechanisms behind the Warburg effect holds promise for developing therapeutic interventions for cancers. Studies are lacking which targeted the GLUTs for treatment of malignancy of thyroid tumors. In our current investigation, we have undertaken this study to determine the potential of Apigenin, plant derived flavonoid in modulating tumor apoptosis by targeting GLUTs expression in SW1736 cell line of anaplastic thyroid carcinoma. Material methodsFlow cytometry with propidium iodide staining was used to determine cell apoptosis. For glucose uptake detection, the “GOD-PAP” enzymatic colorimetric test was used to measure the direct glucose levels inside the cells. To determine the expression of GLUT1 and GLUT3 mRNA in the SW1736 cell line qRT-PCR was employed. Protein levels of GLUT1 and GLUT3 in the SW1736 cell line were detected with western blotting. Also, the scratch wound healing assay was conducted for cell migration. ResultsAccording to qRT-PCR analysis, the levels of GLUT1 and GLUT3 mRNA were lower in the group that received Apigenin relative to the control group. The Apigenin treatment of SW1736 cells decreased protein expression of the GLUT1 and GLUT3 levels in conformity to qRT-PCR. The scratch assays revealed that Apigenin treatment of cancer cell lines inhibited cell migration as compared to control. ConclusionThese findings demonstrate the possibility of targeting the glucose facilitators' pathway for making thyroid cancer cells more susceptible to programmed cell death.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call