Abstract

BackgroundBacteria are associated with the gut, fat bodies and reproductive organs of stored product mites (Acari: Astigmata). The mites are pests due to the production of allergens. Addition of antibiotics to diets can help to characterize the association between mites and bacteria.Methodology and Principal FindingsAmpicillin, neomycin and streptomycin were added to the diets of mites and the effects on mite population growth (Acarus siro, Lepidoglyphus destructor and Tyrophagus putrescentiae) and associated bacterial community structure were assessed. Mites were treated by antibiotic supplementation (1 mgg−1 of diet) for 21 days and numbers of mites and bacterial communities were analyzed and compared to the untreated control. Bacterial quantities, determined by real-time PCR, significantly decreased in antibiotic treated specimens from 5 to 30 times in A. siro and T. putrescentiae, while no decline was observed in L. destructor. Streptomycin treatment eliminated Bartonella-like bacteria in the both A. siro and T. putrescentiae and Cardinium in T. putrescentiae. Solitalea-like bacteria proportion increased in the communities of neomycin and streptomycin treated A. siro specimens. Kocuria proportion increased in the bacterial communities of ampicillin and streptomycin treated A. siro and neomycin and streptomycin treated L. destructor.Conclusions/SignificanceThe work demonstrated the changes of mite associated bacterial community under antibiotic pressure in pests of medical importance. Pre-treatment of mites by 1 mgg−1 antibiotic diets improved mite fitness as indicated accelerated population growth of A. siro pretreated streptomycin and neomycin and L. destructor pretreated by neomycin. All tested antibiotics supplemented to diets caused the decrease of mite growth rate in comparison to the control diet.

Highlights

  • Interactions between arthropods and microbes result in symbiotic associations, which involve both vertical and horizontal transfer mechanisms [1]

  • All diets supplemented with antibiotics decreased the growth rate of A. siro, L. destructor and T. putrescentiae (Table 1)

  • L. destructor was the most sensitive to antibiotic treatment, followed by T. putrescentiae and A. siro according to EC50 values

Read more

Summary

Introduction

Interactions between arthropods and microbes result in symbiotic associations, which involve both vertical and horizontal transfer mechanisms [1]. Specialized feeding on highly restricted diets and utilization of low digestible substrates (e.g. cellulose, lignin) require association with microorganisms [2,3]. The resulting associations aid microorganisms in obtaining nitrogen, sterols, vitamins and essential amino acids [4,5,6], while microbial digestive enzymes support digestive systems of arthropods by interacting with their endogenous enzymes [7]. Stored product mites successfully colonize human made habitats. Bacteria are associated with the gut, fat bodies and reproductive organs of stored product mites (Acari: Astigmata). Addition of antibiotics to diets can help to characterize the association between mites and bacteria

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.