Abstract

Shifts of the center of pressure (CoP) through modulation of foot placement and ankle moments (CoP-mechanism) cause accelerations of the center of mass (CoM) that can be used to stabilize gait. An additional mechanism that can be used to stabilize gait, is the counter-rotation mechanism, i.e., changing the angular momentum of segments around the CoM to change the direction of the ground reaction force. The relative contribution of these mechanisms to the control of the CoM is unknown. Therefore, we aimed to determine the relative contribution of these mechanisms to control the CoM in the anteroposterior (AP) direction during a normal step and the first recovery step after perturbation in healthy adults. Nineteen healthy subjects walked on a split-belt treadmill and received unexpected belt acceleration perturbations of various magnitudes applied immediately after right heel-strike. Full-body kinematic and force plate data were obtained to calculate the contributions of the CoP-mechanism and the counter-rotation mechanism to control the CoM. We found that the CoP-mechanism contributed to corrections of the CoM acceleration after the AP perturbations, while the counter-rotation mechanism actually counteracted the CoM acceleration after perturbation, but only in the initial phases of the first step after the perturbation. The counter-rotation mechanism appeared to prevent interference with the gait pattern, rather than using it to control the CoM after the perturbation. Understanding the mechanisms used to stabilize gait may have implications for the design of therapeutic interventions that aim to decrease fall incidence.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.