Abstract

The success of PbTe as a thermoelectric material has generated growing interest in its charge carrier transport properties. The Boltzmann transport equation (BTE) is solved in a way which takes anisotropy, non-parabolicity, and inelastic scattering fully into account, and an inaccuracy arising from the standard treatment of phonon emission scattering is corrected. The method is used to calculate the conductivity and Hall coefficient of n-PbTe over a wide range of temperatures and doping levels, and it is found that room temperature measurements of PbTe may underestimate the true carrier concentration in some cases by a factor of 2. Experimental results on both bulk and epitaxial samples are in reasonable agreement with the predictions. A conducting p-type layer is also observed in the epitaxial films, exhibiting both persistent photoconductivity and sensitivity to air exposure.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.