Abstract

This paper examined the usage of thermally conductive angled fins within an annular conduit through numerical simulation. Despite the thermally conductive nature of the fins increasing heat transfer surface area, this investigation found that using an optimal fin angle can promote the generation of vortical structures which aid heat transfer. Using ANSYS-Fluent with the SIMPLEC algorithm and the SST κ − ω turbulence model, this research found that heat transfer performance improved considerably when the generated vortices were sufficiently large and robust. However, the type of generated vortex had a profound impact when optimising for higher performance evaluation criterion (PEC) values. Longitudinal vortices improved heat transfer performance with a low impact on pressure drop increase, unlike transverse vortices, which increased pressure drop significantly. The fin angles of 50° and 60° yielded high heat transfer performance without much increase in pressure drop, thus resulting in higher PEC values. Additionally, using fin heights that correlate to 20% to 60% of the gap between the concentric walls was ideal when designing heat exchangers to achieve higher PEC values. The results of this numerical investigation have been validated both theoretically and experimentally to ensure accurate reporting of the findings.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call