Abstract

The mechanical properties of different molecular weights of polyethylene glycol (PEG) have been determined by formation of compacted tablets and beams, which were subjected to diametral compression and 3-point bending, respectively. From diametral compression, the tensile strength for the different grades of PEG was determined. Flat beams made from powder by compaction were used to determine Young's modulus of elasticity. Beams into which a notch had been introduced after formation allowed the fracture mechanical parameters of critical stress intensity factor, K IC, and fracture toughness, R, to be determined. Evaluation of these parameters as a function of compact porosity allowed extrapolation to values at zero porosity, providing an estimate of the material properties. The increase in chain length of the PEG was found to have a non-linear effect on tensile strength and Young's modulus. The ductility of the polymer increased proportionally to the increase in chain length, reflected by the linear relationship between K IC and the molecular weight. Young's modulus and critical stress intensity factor allowed the estimation of the strain energy release rate, G IC, which is the driving force in crack propagation. Consequently, the tensile strength at zero porosity was found to be predictable from the values of G IC and the molecular weight of the different grades of PEG.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.