Abstract

Through a series of molecular dynamics simulations based on the flexible three-centered water model, this study analyzes the structural changes induced in liquid water by the application of a magnetic field with a strength ranging from 1to10T. It is found that the number of hydrogen bonds increases slightly as the strength of the magnetic field is increased. This implies that the size of a water cluster can be controlled by the application of an external magnetic field. The structure of the water is analyzed by calculating the radial distribution function of the water molecules. The results reveal that the structure of the water is more stable and the ability of the water molecules to form hydrogen bonds is enhanced when a magnetic field is applied. In addition, the behavior of the water molecules changes under the influence of a magnetic field; for example, the self-diffusion coefficient of the water molecules decreases.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.