Abstract

BackgroundThe blood–brain barrier (BBB) severely limits the entry of systemically administered drugs including chemotherapy to the brain. In rodents, regadenoson activation of adenosine A2A receptors causes transient BBB disruption and increased drug concentrations in normal brain. This study was conducted to evaluate if activation of A2A receptors would increase intra-tumoral temozolomide concentrations in patients with glioblastoma.MethodsPatients scheduled for a clinically indicated surgery for recurrent glioblastoma were eligible. Microdialysis catheters (MDC) were placed intraoperatively, and the positions were documented radiographically. On post-operative day #1, patients received oral temozolomide (150 mg/m2). On day #2, 60 min after oral temozolomide, patients received one intravenous dose of regadenoson (0.4 mg). Blood and MDC samples were collected to determine temozolomide concentrations.ResultsSix patients were enrolled. Five patients had no complications from the MDC placement or regadenoson and had successful collection of blood and dialysate samples. The mean plasma AUC was 16.4 ± 1.4 h µg/ml for temozolomide alone and 16.6 ± 2.87 h µg/ml with addition of regadenoson. The mean dialysate AUC was 2.9 ± 1.2 h µg/ml with temozolomide alone and 3.0 ± 1.7 h µg/ml with regadenoson. The mean brain:plasma AUC ratio was 18.0 ± 7.8 and 19.1 ± 10.7% for temozolomide alone and with regadenoson respectively. Peak concentration and Tmax in brain were not significantly different.ConclusionsAlthough previously shown to be efficacious in rodents to increase varied size agents to cross the BBB, our data suggest that regadenoson does not increase temozolomide concentrations in brain. Further studies exploring alternative doses and schedules are needed; as transiently disrupting the BBB to facilitate drug entry is of critical importance in neuro-oncology.

Highlights

  • The blood–brain barrier (BBB) severely limits the entry of systemically administered drugs including chemotherapy to the brain

  • This study evaluated temozolomide drug delivery to the peritumoral non-contrast enhancing area in both primary and metastatic patients (n = 10)

  • Our study failed to demonstrate that brain interstitial temozolomide concentrations were increased by use of standard dose regadenoson; which we prespecified as an increase in temozolomide brain concentration by ≥ 50%

Read more

Summary

Introduction

The blood–brain barrier (BBB) severely limits the entry of systemically administered drugs including chemotherapy to the brain. The BTB amongst malignant gliomas is unique with a high proliferative index of microvasculature and evident alterations in astrocytic endfeet and transcytotic mechanisms; making the BTB more leaky in certain areas of the tumor but peritumoral brain less permeable with a normal BBB [10, 13,14,15].

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call