Abstract
Human α-synuclein is the causative protein of several neurodegenerative diseases, such as Parkinson's disease (PD) and dementia with Lewy Bodies (DLB). The N-terminal half of α-synuclein contains seven imperfect repeat sequences. One of the PD/DLB-causing point mutations, E46K, has been reported in the imperfect repeat sequences of α-synuclein, and is prone to form amyloid fibrils. The presence of seven imperfect repeats in α-synuclein raises the question of whether or not mutations corresponding to E46K in the other imperfect KTKE(Q)GV repeats have similar effects on aggregation and fibrillation, as well as their propensities to form α-helices. To investigate the effect of E(Q)/K mutations in each imperfect repeat sequence, we substituted the amino acid corresponding to E46K in each of the seven repeated sequences with a Lys residue. The mutations in the imperfect KTKE(Q)GV repeat sequences of the N-terminal region were prone to decrease the lag time of fibril formation. In addition, AFM imaging suggested that the Q24K mutant formed twisted fibrils, while the other mutants formed spherical aggregates and short fibrils. These observations indicate that the effect of the mutations on the kinetics of fibril formation and morphology of fibrils varies according to their location.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.