Abstract

Herein, we explored the interaction of Al2O3 NPs with RBCs and Hb to determine the effect of Al2O3 NPs on hemolytic activity and Hb denaturation. The percentage of hemolysis of extracts and direct contact assays triggered by Al2O3 NPs was calculated by determining supernatant Hb concentration at 540 nm. Far-UV CD and Trp/ANS/acrylamide fluorescence spectroscopic methods were used to determine the structural changes of Hb upon interaction with Al2O3 NPs. Theoretical studies were carried out to display the residues involved in the binding site of Hb with Al2O3 nanocluster as well as the structural changes of Hb after interaction. The results showed that the percentage of hemolysis of extract and direct contact assays induced by Al2O3 NPs were 1.16 and 0.46, respectively. Fluorescence spectroscopy revealed that Al2O3 NPs alter the quaternary structure of the protein; however, CD spectroscopy indicated that the secondary structure of Hb remains almost unchanged. Theoretical study displayed that Al2O3 nanocluster interacts with different residues of protein, and Hb tends to be destabilized at the binding site with nanocluster. This study may be significant in exploring the toxicity profile of Al2O3 NPs for their in vivo implementations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.