Abstract

In this paper, the mechanical properties of a typical four-component composite solid propellants with various designed Al/oxidizer interfaces have been studied. The Al/oxidizer interfacial control is mainly realized by using the core-shell composites AP@Al and Al@RDX with different particle sizes, where Al powder was coated with a thin layer of polydopamine (PDA) as the binding sites, so that the oxidizers could crystalize on it during a rapid spray granulation process. The stress-strain curves of the above propellants at different temperatures and different tensile rates have been obtained. The dependence of the loss factor on temperature was studied by using a dynamic thermomechanical analysis (DMA). It has been shown that the fracture elongation of the interfacial modified propellants can reach 51.81% at room temperature, which is 127.3% higher than that of the blank formulation under the same formulation. Moreover, the temperature and strain rate sensitivity of interfacial controlled HTPB propellants is much less than that of traditional ones. The microstructure of these propellants at the crack sites was investigated by scanning electron microscopy (SEM) supported with micro-area in-situ tensile CT scanning technology, to clarify their damage and failure mechanisms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.