Abstract

The aim of the present study was to explore the effect of aloe-emodin (AE)-induced photodynamic activity in human gastric cancer cells. AE was used as a photosensitizer to explore the effect of photodynamic therapy (PDT) in human gastric cancer cells (SGC-7901). An MTT assay was used to detect the effect of AE-induced PDT in optimal concentrations and illumination energy densities in human gastric cancer cells. Following AE-induced PDT, morphological changes of the cells and the rate of cell death were evaluated by TUNEL assay and flow cytometry, respectively. The expression levels of caspase-9 and caspase-3 were determined by western blot analysis. The AE and AE-induced PDT demonstrated a significant inhibitive effect on the proliferation of human gastric cancer cells in dose-dependent and energy-dependent manners. For subsequent experiments, 10 µM AE and 12.8 J/cm2 illumination energy density were used. Typical morphological changes of apoptosis were observed in the cells using a TUNEL assay 12 h subsequent to AE-induced PDT. The percentage of apoptotic cells treated with AE-induced PDT significantly increased when compared with the control group, the 10 µM AE group and the illumination group (P<0.05). Upregulation of caspase-9 and caspase-3 protein levels was also observed following AE-induced PDT. The present study revealed that 10 µM AE-induced PDT had an inhibitory effect on human gastric cancer cells, and it may induce cell apoptosis by upregulating caspase-9 and caspase-3, which indicated that the mitochondrial pathway may be involved. AE-induced PDT has the potential to be a novel therapy for the treatment of human gastric cancer. However, further investigations are required.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.